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We apply Monte Carlo simulations to count the numbers of solutions of two well-known combinatorial
problems: the N-queens problem and Latin-square problem. The original system is first converted to a general
thermodynamic system, from which the number of solutions of the original system is obtained by using the
method of computing the partition function. Collective moves are used to further accelerate sampling: swap
moves are used in the N-queens problem and a cluster algorithm is developed for the Latin squares. The
method can handle systems of 104 degrees of freedom with more than 1010 000 solutions.
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Counting solutions of constraint-satisfaction problems is a
fundamental subject in basic science and engineering. Spe-
cifically, one aims at calculating the number of ways for a
system to satisfy a set of constraints simultaneously. For ex-
ample, in the N-queens problem, the constraints are to avoid
N queens on an N�N chessboard attacking one another, see
Fig. 1�a�. In the Latin-square problem, one looks for ways of
filling an L�L table using L different symbols such that in
every row or column, each symbol only occurs once, see Fig.
1�b�.

As standard benchmark tests, many heuristic and combi-
natorial methods are developed to search for one or a few of
their solutions, e.g., the min conflicts algorithm �1�, dynamic
programming �2�, and iterated map method �3�. However, to
count all solutions is a more challenging task. The traditional
approaches by a complete enumeration in general can only
handle systems of a relatively small size because the number
of solutions grows exponentially with the system size. To
date, the largest system �N=25� of the N-queens problem
contains about 2.21�1015 solutions according to a recent
enumeration �4�. For the Latin-square problem, the largest
exactly solved system L=11 has about 7.77�1047 solutions
�5�.

An alternative approach is to calculate the ratio between
the number of solutions of the original problem and that of a
simplified problem. If we know the exact number of solu-
tions of the simplified problem, then the number of solutions
of the original problem can be deduced.

To connect the original problem �denoted as O� with the
simpler problem �denoted as S�, we carefully choose the
problem S to be a generalized version of the problem O such
that every solution of the problem O is a solution of the
problem S. Here, the simpler problem S typically has fewer
constraints, and hence more �easier-to-find� solutions. We
then perform a Monte Carlo simulation in the configurational
space spanned by all solutions of the problem S to compute
the ratio of solutions of O and S. A convenient way to rec-
ognize a solution of the problem O is to use an energy func-
tion E that is non-negative everywhere and is zero if and

only if the configuration is a solution of the problem O.
Since the numbers of solutions of O and S usually differ

by many orders of magnitudes as the system size increases,
the ratio of the two becomes too small to be computed di-
rectly. Therefore we need a set of intermediate problems �Si�
�see Fig. 2�, each of which is associated with a reciprocal
temperature �i. The �i weights each configuration according
to its energy E as exp�−�iE�. The weighted sum of solutions
using �i is the partition function Zi=� exp�−�iE�. Note, the
partition function has an interpretation of the number of so-
lutions in two extreme cases: the number of solutions of the
problem S corresponds to the partition function at �=0, and
that of the problem O is the partition function at �→�,
where only zero-energy configurations can survive. Several
Monte Carlo methods were previously used to infer the par-
tition function �6�. However, these methods failed to be ap-
plied to large systems.

To handle large systems, we use a Monte Carlo method
that directly computes the partition function �7�, where we
simultaneously sample the system at multiple temperatures
by means of transitions between the temperatures. In addi-
tion to configurational space sampling under a fixed tempera-
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FIG. 1. �a� In the N-queens problem, a solution is a way of
placing N �here N=8� queens on an N�N chessboard such that no
two queens attack each other horizontally, vertically, or diagonally.
�b� The Latin-square problem requires one to use L different sym-
bols �in this case L=8 and the symbols are 1 ,2 , . . . ,L� to fill an L
�L table such that each symbol only occurs once in any row and
column. An example of a cluster generated by the cluster algorithm
�see text� is shown by the four marked cells. After it is generated,
the symbols “1” and “5” within the cluster are exchanged.
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ture �i, e.g., using the Metropolis algorithm �8�, temperature
transitions are randomly proposed from the current value �i
to another one � j, and accepted with a probability

min�1,exp�−�� j −�i�E+ln Z̃i−ln Z̃j��. Here, E is the current

energy, Z̃i and Z̃j are the estimated values of the partition

function at �i and � j, respectively. The ln Z̃i’s are then dy-
namically updated and converged to the actual values ln Zi’s
through a recursive updating scheme �9� until an accuracy

�ln Z̃i−ln Zi��0.10 is reached �7�. This accuracy guarantees a

correct order of magnitude of the Z̃i �which is log10 Z̃i

=ln Z̃i / ln 10�. To obtain a more accurate partition function,

we perform an additional run of simulations with all Z̃i’s
fixed at their final values. In the final run, the algorithm is
reduced to an optimized simulated tempering method �10�
�since we no longer update Z̃i’s�. The partition function ob-
tained in the updating procedure serves as a set of optimal
parameters for the system to evenly spend the total simula-
tion time at different temperatures, and avoids the system
being trapped in any particular temperature. Thus using the
recursive updating procedure to estimate the partition func-
tion is essential to the stability of the algorithm before
switching to the simulated tempering run with the knowledge
of the optimal parameters. Practically, the final run is always
much longer than all the previous updating stages; thus the
cost of the updating is negligible. The statistics accumulated
from the final run is used to further refine the partition func-
tion through the multiple histogram method �11�.

For the N-queens problem, see Fig. 1�a�, the N-rooks
problem can serve as the problem S, where queens function
as rooks such that they can attack each other only horizon-
tally and vertically, but not diagonally. The problem S is a
trivial one: each of its solutions corresponds to a permutation
of the N column indices because the row constraints are sat-
isfied by placing only one rook in each row while the column
constraints are satisfied by placing rooks from different rows
in different columns. Hence there are totally N! solutions for
the N-rooks problem.

We now specify the energy function that connects the

simple problem with the original one. If the diagonal d has
Cd resident queens, the energy of that diagonal Ed=max�Cd
−1,0�. The energy of the whole system is a sum of the
energy of all diagonals. A zero-energy configuration guaran-
tees that no diagonal has more than one queen, and therefore
is a solution of the N-queens problem.

We used the swap move introduced by Sosic and Gu �12�
to sample the configurational space. In each Monte Carlo
step, we randomly choose two rows and try to swap the
column indices of the queens there. Note, after a swap the
horizontal and vertical constraints are still satisfied. Thus
these swaps can be used to perform sampling on the configu-
rational space of the problem S.

The number of solutions for systems of several typical
sizes are shown in Table I. For the largest exactly solved
system to date N=25 �4�, the relative error is only 5�10−5.
The results on small systems serve as a check of our method.
Currently, there is a dispute about the number of solutions
for N=24. An alternative calculation �13� gives
226 732 487 925 864 solutions instead of the value
227 514 171 973 736 used in Table I. Our long-time simula-
tion result 2.2751�1014 clearly supports the latter result.
More importantly, our method can be used on much larger
systems, to which one cannot apply traditional counting al-
gorithms due to astronomically large numbers of solutions.
In the largest system, there are about 1.32�1031 560 solutions
for N=10 000 �in which case we used 82 temperatures from
�=9.2 to 0�. The results on large systems are shown in Fig.
3. Our linear fitting result shows that for large systems N
�100, the number of solutions QN satisfies ln�N! /QN�

TABLE I. The number of solutions QN of the N-queens prob-
lems. The simulation costs are measured by sweeps �numbers of
Monte Carlo steps per queen�. The first six significant digits of the
exact results �4� are displayed in the last column for comparison.

N Sweeps QN Exact value

21 4�1010 3.1468�1011 3.14666�1011

22 5�1010 2.6910�1012 2.69101�1012

23 4�1010 2.4234�1013 2.42339�1013

24 1�1011 2.2751�1014 2.27514�1014

25 1�1011 2.2080�1015 2.20789�1015

26 1�1011 2.2319�1016

27 5�1010 2.3489�1017

28 5�1010 2.5645�1018

29 5�1010 2.8899�1019

30 5�1010 3.3731�1020

40 2�1010 8.273�1031

50 2�1010 2.456�1044

100 1�1010 2.392�10117

200 1�1010 2.041�10293

500 1�1010 3.219�10929

1000 5�109 1.094�102158

2000 2�109 9.45�104915

5000 1�109 1.46�1014276

10000 1�109 1.32�1031560

S

O

S2

S1

FIG. 2. A schematic illustration of the method. We aim at cal-
culating the ratio between the number of solutions of the original
problem O �represented by the darkest area� and that of a simplified
and less-constrained problem S �the whole square� by a Monte
Carlo simulation in the space of solutions of S. We also introduce a
few intermediate problems Si’s to facilitate the calculation of the
ratio.
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	0.944 000N−0.938; the maximal fitting error is less than
0.02 in this range.

Next, we turn to the Latin-square problem. For conve-
nience we choose 1 ,2 , . . . ,L as the L different symbols to fill
the L�L table. To construct a problem S, we remove the
constraints for columns, i.e., we no longer require each sym-
bol to occur once in a column, while retaining the constraints
for rows. Thus different rows act independently. The con-
straints for symbols within a row being mutually different
imply that each row configuration is a permutation of the L
symbols. Thus there are L! different arrangements for each
individual row, and �L!�L arrangements for the whole system
�the problem S�.

The energy function is the following. A symbol that is
shared by two different rows on the same column contributes
+1 to the total energy, i.e., E=�i�j;k��sik ,sjk�. Here, sij is the
symbol at the ith row and jth column; ��a ,b� is +1 if the two
symbols a and b are the same, zero otherwise; the two indi-
ces i and j enumerate over every pair of different rows, k
every column. A Metropolis way to sample the system is to
randomly choose two columns in a row and to try to swap
their symbols. Similar to the previous case, the swaps pre-
serve the constraints for rows and thus are qualified as a
sampler of the configurational space.

However, at a low temperature, the swap becomes ineffi-
cient due to frequent rejections. For example, at the lowest
temperature �=8.4 we used for the 100�100 system, the
average probability of accepting a swap is less than 0.01%.
To overcome the difficulty, we developed a rejection-free
cluster algorithm for this system and used it to generate con-
figurational changes. The cluster algorithm is of the same
spirit of its counterpart on the Ising model �14�. It exploits
the symmetry between any two symbols a and b, e.g., the
system energy is unchanged if we exchange the two symbols
in a suitable collection of rows �or a cluster�.

A cluster is generated as the following. We first randomly
choose two symbols a and b as well as a row index i and add
this row index i into the cluster as a “seed.” We now scan the

row i and pick up the column j where the symbol sij is a and
search in other rows i� for the symbol b at the same column
j, i.e., si�j =b. For each row i� found, we use a probability
Padd=1−exp�−�� to add it into the cluster. Similarly, we pick
up the column k where sik=b, and add every other row i�
where si�k=a to the cluster using the same probability. This
process is repeated until every row in the cluster is consid-
ered. An example is shown in Fig. 1�b�, where a=1 and b
=5, and the bottom row is the seed. Once the cluster is
formed, we exchange the symbols a and b within.

The number of solutions of the Latin-square problem is
listed in Table II. We used the Metropolis moves for small
systems, but cluster moves for large systems at low tempera-
tures. In this way we could access large systems, as shown in
Fig. 3. The size of the largest system is 100�100, in which
there are over 1011 710 solutions. In this system, we used 85
temperatures from �=8.4 to 0. We attempted to fit the num-
ber of solutions SL to the formula ln�L!L /SL�	L2�0.996 42
+42.3252 /L−35.6031 /L2� / �1+48.9874 /L+149.97 /L2�; the
maximal fitting error is 0.03.

The heat capacity C of the system manifests an interesting
finite-size effect. As the system size increases, the system
develops two separate maxima, see Fig. 4. The first maxi-
mum corresponds to a transition from a ground state to its
surrounding excited states; while the second corresponds to a
transition from the ordered phase and disordered one. The
anomaly of the heat capacity is a result of many frustrated
states lying in the valley between the two peaks. The valley
between the two maxima also coincides with the location
where the system has the maximal fraction of percolated
clusters. In the cluster algorithm, a cluster is defined as per-
colated if it includes all rows. As shown in the inset of Fig. 4,
for the 100�100 Latin square, the maximum fraction 0.06
occurs at Th	0.14, where the heat capacity hits its local
minimum. A qualitative explanation for why the highest per-
colation fraction occurs at a finite temperature Th instead of

TABLE II. The numbers of solutions SL of the L�L Latin-
square problems. One sweep is defined as the number of Monte
Carlo steps per site. The exact results �5� are displayed to the first
five significant digits. We used the cluster algorithm for the last two
systems.

Size Sweeps SL Exact value

10�10 1�1010 9.988�1036 9.9824�1036

11�11 1�1010 7.773�1047 7.7697�1047

12�12 1�1010 3.102�1060

13�13 1�1010 7.500�1074

14�14 1�1010 1.266�1091

15�15 1�1010 1.728�10109

16�16 1�1010 2.161�10129

17�17 1�1010 2.804�10151

18�18 1�1010 4.256�10175

19�19 1�1010 8.354�10201

20�20 1�1010 2.365�10230

50�50 1�108 5.66�102250

100�100 1�107 1.55�1011710
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FIG. 3. The numbers of solutions of the N-queens problem QN

and that of the Latin-square problem SL versus the system size N
�for a Latin square N=L�L�. There is a simple linear relation be-
tween ln�N! /QN� and N while a fitting formula for SL is more com-
plicated �see text�. The inset shows the error of fitting the formulas
to the numerical results.
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T=0 is the following. At a very low temperature, each col-
umn has at most two cells with the two symbols under con-
cern �a and b�. As the temperature is increased to Th, a col-
umn is allowed to have more of these cells �e.g., two with a’s
and one with b�. Meanwhile Padd is not changed significantly
from 1.0 �in the above example, Padd	0.9992 at Th�. Thus
clusters are more readily spread over rows than at T=0.

However, a further increase of the temperature decreases
Padd and suppresses the growth of clusters.

In summary, we demonstrate an efficient method to count
the number of solutions for the N-queens problem and Latin-
square problem. The original problem is generalized to a
less-constrained problem and its partition function is calcu-
lated. As demonstrated here, the multiple-temperature simu-
lation protocol is particularly effective as the systems contain
no obvious singularities in the heat capacity �7,15�. Another
factor that contributes to a high sampling efficiency is the
use of collective Monte Carlo moves: in the N-queens prob-
lem, the column indices of the queens are swapped rather
than altered individually; similarly, in the Latin-square prob-
lem, symbols within a row are always exchanged �the cluster
move is even more collective because we also attempt to
exchange symbols in different rows�. These collective moves
not only improve the sampling efficiency at low tempera-
tures, but also reduce the sampling space by making the
problem S as close to the problem O as possible. In the
N-queens problem, the use of the swap move reduces the
sampling space of the problem S from NN solutions to N!
solutions, while in the Latin-square problem the sampling
space is reduced from LL�L to �L!�L. We expect the compu-
tational tool to be applicable to other problems.
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FIG. 4. Heat capacity C per site of Latin squares versus tem-
perature T. The heat capacity develops two peaks as one increases
the system size. The inset shows that the valley between the two
maxima of the heat capacity for the 100�100 system �the solid
line, the left axis� corresponds to where the fraction of percolated
clusters �the dash-dot line, the right axis� reaches the maximum.
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